\(\int \frac {(a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [216]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 196 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=-\frac {16 a^2 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (15 A+17 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d} \]

[Out]

2/15*a^2*(15*A+17*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d+2/5*C*(a+a*sec(d*x+c))^2*sin(d*x+c)*sec(d*x+c)^(1/2)/d+8/15
*C*(a^2+a^2*sec(d*x+c))*sin(d*x+c)*sec(d*x+c)^(1/2)/d-16/5*a^2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(3*A+C)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4174, 4103, 4082, 3872, 3856, 2719, 2720} \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a^2 (15 A+17 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {8 C \sin (c+d x) \sqrt {\sec (c+d x)} \left (a^2 \sec (c+d x)+a^2\right )}{15 d}-\frac {16 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^2}{5 d} \]

[In]

Int[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(-16*a^2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(3*A + C)*Sqrt[Cos[
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*(15*A + 17*C)*Sqrt[Sec[c + d*x]]*Sin[c
+ d*x])/(15*d) + (2*C*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(5*d) + (8*C*Sqrt[Sec[c + d*x]]*
(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(15*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4174

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n +
 a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(
-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {2 \int \frac {(a+a \sec (c+d x))^2 \left (\frac {1}{2} a (5 A-C)+2 a C \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{5 a} \\ & = \frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {4 \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{4} a^2 (15 A-7 C)+\frac {1}{4} a^2 (15 A+17 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a^2 (15 A+17 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {8 \int \frac {-3 a^3 C+\frac {5}{4} a^3 (3 A+C) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a^2 (15 A+17 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d}-\frac {1}{5} \left (8 a^2 C\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (2 a^2 (3 A+C)\right ) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 a^2 (15 A+17 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d}-\frac {1}{5} \left (8 a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2 (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {16 a^2 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (15 A+17 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \sin (c+d x)}{5 d}+\frac {8 C \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{15 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.98 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.68 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {4 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \cos ^4(c+d x) \left (12 C \left (1+e^{2 i (c+d x)}\right )+12 C \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+5 (3 A+C) e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\frac {-3 (-5 A-16 C+5 A \cos (2 c)) \cos (d x) \csc (c)+30 A \cos (c) \sin (d x)+2 C (10+3 \sec (c+d x)) \tan (c+d x)}{\sec ^{\frac {7}{2}}(c+d x)}\right )}{30 d (A+2 C+A \cos (2 (c+d x)))} \]

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(((-4*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 +
 E^((2*I)*(c + d*x)))]*Cos[c + d*x]^4*(12*C*(1 + E^((2*I)*(c + d*x))) + 12*C*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2
*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*(3*A + C)*E^(I*(c + d*x))*(-1 + E^
((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d
*x))*(-1 + E^((2*I)*c))) + (-3*(-5*A - 16*C + 5*A*Cos[2*c])*Cos[d*x]*Csc[c] + 30*A*Cos[c]*Sin[d*x] + 2*C*(10 +
 3*Sec[c + d*x])*Tan[c + d*x])/Sec[c + d*x]^(7/2)))/(30*d*(A + 2*C + A*Cos[2*(c + d*x)]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(755\) vs. \(2(224)=448\).

Time = 3.08 (sec) , antiderivative size = 756, normalized size of antiderivative = 3.86

method result size
default \(\text {Expression too large to display}\) \(756\)
parts \(\text {Expression too large to display}\) \(1043\)

[In]

int((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2
*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^3*(60*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-60*A*Ellipt
icF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*
c)^4+96*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-20*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-48*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-60*A*cos(1/2*d*x+1/2*c)*sin(
1/2*d*x+1/2*c)^4+60*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-116*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*C*EllipticF(cos(1/2*d*x+1/2*
c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+48*C*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2
+15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*A-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+37*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*C-5*C*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*C*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (3 \, A + C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (3 \, A + C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 i \, \sqrt {2} C a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 i \, \sqrt {2} C a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, {\left (5 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 10 \, C a^{2} \cos \left (d x + c\right ) + 3 \, C a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(3*A + C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*
I*sqrt(2)*(3*A + C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*I*sqrt(2
)*C*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*
I*sqrt(2)*C*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)
)) - (3*(5*A + 8*C)*a^2*cos(d*x + c)^2 + 10*C*a^2*cos(d*x + c) + 3*C*a^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*
cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(1/2), x)